
Design	Patterns
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	
Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2. Head	first	Design	Patterns,	Second	Edition,	Eric	Freeman	and	Elisabeth	Robson	

2



Being	an	Observer!	- The	
Observer	Pattern
[Behavioral]

3



Meet	the	Observer	Pattern!

4

• Subscriber chooses the (channel) publisher by pressing on subscribe button

• The channel who is posting (Publisher) delivers only to its subscribers

• publisher has to maintain a list of subscribers (channel subscribers)



Meet	the	Observer	Pattern:	Motivation	

5Can	we	push	the	data	to	all	clients	as	soon	a	s	it	arrives?



Meet	the	Observer	Pattern

6

• What	if	we	had	the	sensor	data	to	be	publishers?

• What	if	the	clients	just	become	subscribers?

• Every	time	data	comes,	all	the	subscribers	are	notified

• Publishers	and	subscribers	can	be	decoupled

• Adding	new	clients	also	is	just	same	as	adding	a	new	subscriber



Observer	Pattern:	Documentation	

7

Intent

Defining	a	one-to-many	dependency	between	objects
Change	in	object	notifies	all	dependent	objects

Also	Known	As:		Dependents,	Publish-subscribe

Motivation

• Maintaining	consistency	between	objects
• Reduce	tight	coupling	and	increase	reusability
• Two	key	objects:	Subject	and	Observer

Example:	Presentation	components	and	application	data



Observer	Pattern:	Documentation	

8

Applicability

• When	abstraction	has	two	aspects	– One	dependent	on	the	other	and	separation	
promotes	reusability
• Eg:	Think	of	having	just	one	class,	Display	instead	of	mobile	and	web

• When	a	change	in	one	object	requires	changing	others	[Not	clear	how	many!]
• When	object	should	notify	others	without	assuming	about	the	objects	[reduce	
coupling]	



Observer	Pattern:	Documentation	

9

Structure

Image	source:	Gang	of	four	book



Observer	Pattern:	Documentation	

10

Participants
Subject	(IoTInterface)
• Knows	its	observers	– Many	observers	per	subject
• Provides	interface	for	attaching	and	detaching	observer	objects

Observer	(DataSubscribers)
• Defines	an	update	interface	for	objects	that	should	be	notified	

Concrete	Subject	(RfidPublisher)
• The	key	subject	that	contains	the	state	information
• Sends	a	notification	to	its	observers	when	state	change	happens

Concrete	Observer	(MobileSubscriber)
• Maintains	reference	to	concrete	subject	object
• Implements	observer	update	interface	

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Observer	Pattern:	Documentation	

11

Consequences

• Abstract	coupling	between	Subject	and	Observer
• Subject	doesn’t	know	the	concrete	class	of	any	observer
• The	coupling	is	as	minimal	as	possible

• Support	for	broadcast	communication
• Subject	doesn’t	care	about	number	of	observers
• The	notifications	are	automatically	sent	as	broadcast	to	all	interested	

• Unexpected	updates
• Unintended	updates	on	subject	may	cause	cascade	of	updates	on	observers
• Often	simple	update	notification	may	not	provide	enough	changes	on	state	
changes	of	subject	



Observer	Pattern:	Documentation	

12

Implementation

Check	the	source	code	given	along:	IoTObserver



Let’s	build	a	factory	to	create	
objects	– Factory	Pattern!

[Creational]

13



Meet	the	Factory	Pattern!

14We	may	want	as	a	distributor	need	multiple	cars	– Just	order	to	the	vendor!!



Meet	the	Factory	Pattern:	Motivation	

15Enroll	function	may	be	different	in	each!	We	may	want	to	add	more	in	future	- Elective



Meet	the	Factory	Pattern

16

• What	if	we	want	to	easily	add	new	products	(objects	of	new	type)?	

• What	if	you	don’t	want	to	change	too	many	places	when	something	is	added?

• Decoupling	clients	from	knowing	actual	products	(program	for	interface)

• Encapsulate	object	creation	(encapsulate	what	varies)



Factory	Pattern:	Documentation	

17

Intent

Defining	an	interface	for	creating	object	but	let	subclasses	decide	which	class	to	be	
instantiated	

Also	Known	As:		Virtual	Constructor

Motivation

• Not	clear	which	of	the	subclasses	of	the	parent	class	to	access
• Encapsulate	the	functionality	required	to	select	a	class	to	method
• Two	key	objects:	Factory	(Creator)	and	Product



Factory	Pattern:	Documentation	

18

Applicability

• A	class	can’t	anticipate	the	class	of	objects	it	must	create

• Class	wants	subclasses	to	specify	the	object	it	creates

• Classes	delegate	responsibility	to	one	of	the	several	helper	classes	and	which	is	
the	delegate	needs	to	be	localized		



Factory	Pattern:	Documentation	

19

Structure

Image	source:	Gang	of	four	book



Factory	Pattern:	Documentation	

20

Participants
Product	(Systems	Interface)
• Defines	the	interface	of	objects	the	factory	method	creates

Concrete	Product	(Systems	Course)
• Implements	the	product	interface

Creator	(CourseFactory)
• Declares	the	factory	method	which	returns	object	of	type	product
• Calls	factory	method	to	create	the	product

Concrete	Creator	(SystemsCourseFactory)
• Overrides	the	factory	method	to	return	instance	of	concrete	product

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Factory	Pattern:	Documentation	

21

Consequences

• Eliminates	the	need	to	bind	application-specific	classes	into	code
• Code	only	deals	with	the	product	interface
• Any	number	of	concrete	products	can	be	added

• Provides	hooks	for	subclasses
• Creating	objects	inside	a	class	is	more	flexible	than	direct	creation

• Connects	parallel	hierarchies
• Class	can	delegate	some	of	its	responsibilities	to	another	class
• Those	can	also	use	the	abstract	factory

• Too	much	of	subclassing	can	happen
• Code	can	become	too	complicated
• Becomes	more	easier	to	introduce	factory	to	existing	hierarchy



Observer	Pattern:	Documentation	

22

Implementation

Check	the	source	code	given	along:	CourseFactory



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

