Design Patterns

CS6.401 Software Engineering

Co 1[%;\1 A2, @'mew'y Yes e Cenfve

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

o &
. S R
B et
R ol S Al RN
'# RYE | O e
N H

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY
HYDERABAD

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides

2. Head first Design Patterns, Second Edition, Eric Freeman and Elisabeth Robson

Being an Observer! - The
Observer Pattern
|Behavioral]

Meet the Observer Pattern!

n SUBSCRIBE n

SUBSCRIBED

* Subscriber chooses the (channel) publisher by pressing on subscribe button
* The channel who is posting (Publisher) delivers only to its subscribers

* publisher has to maintain a list of subscribers (channel subscribers)

Meet the Observer Pattern: Motivation

Temp Sensors

-
l - Send data

Class @ Desktop Client
Class

RFID"
El Send data

Mobile Client
RFID Class
Sensor Class

Can we push the data to all clients as soon a s it arrives?

Meet the Observer Pattern

 What if we had the sensor data to be publishers?
 What if the clients just become subscribers?
* Every time data comes, all the subscribers are notified

* Publishers and subscribers can be decoupled

* Adding new clients also is just same as adding a new subscriber

&0

Observer Pattern: Documentation

Intent

Defining a one-to-many dependency between objects
Change in object notifies all dependent objects

Also Known As: Dependents, Publish-subscribe
Motivation

* Maintaining consistency between objects
* Reduce tight coupling and increase reusability L,

* Two key objects: Subject and Observer

Example: Presentation components and application data

Observer Pattern: Documentation

Applicability

 When abstraction has two aspects - One dependent on the other and separation
promotes reusability
* Eg: Think of having just one class, Display instead of mobile and web
 When a change in one object requires changing others [Not clear how many!]
* When object should notify others without assuming about the objects [reduce
coupling]

4 N

Observer Pattern: Documentation

Structure

Subject

observers

Attach(Observer)
Detach(Observer)

Notify() o - - - - -

for all o in observers {

e : o—>Update()

A

ConcreteSubject

subject

,..I Observer

GetState() ©---
SetState()

-~ - I
return subjectState

subjectState

Image source: Gang of four book

. - | observerState =
subject—->GetState()

Update()
ConcreteObserver
Update() O~
observerState

Observer Pattern: Documentation

Participants

Subject (IoTInterface)

* Knows its observers - Many observers per subject

* Provides interface for attaching and detaching observer objects

Observer (DataSubscribers)
* Defines an update interface for objects that should be notified

Concrete Subject (RfidPublisher)
* The key subject that contains the state information
* Sends a notification to its observers when state change happens

Concrete Observer (MobileSubscriber)
* Maintains reference to concrete subject object
* Implements observer update interface

10

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Observer Pattern: Documentation

Consequences

* Abstract coupling between Subject and Observer
* Subject doesn’t know the concrete class of any observer
* The coupling is as minimal as possible

e Support for broadcast communication
* Subject doesn’t care about number of observers
* The notifications are automatically sent as broadcast to all interested

* Unexpected updates
* Unintended updates on subject may cause cascade of updates on observers
* Often simple update notification may not provide enough changes on state
changes of subject

Observer Pattern: Documentation

Implementation

Check the source code given along: IoTObserver

12

Let’'s build a factory to create
objects — Factory Pattern!
|Creational]

Meet the Factory Pattern!

A M e
HrETE

0 P

Factory of CB Cars

CAR DEALER
-

Need New cars

— Create XZ Cars =>
of XZ

Distributor Factory

Factory of PZ Cars

We may want as a distributor need multiple cars - Just order to the vendor!!

Meet the Factory Pattern: Motivation

@ Course System

|:| Regular Courses

Enroll function may be different in each! We may want to add more in future - Elective

Meet the Factory Pattern

What if we want to easily add new products (objects of new type)?
What if you don’t want to change too many places when something is added?

Decoupling clients from knowing actual products (program for interface)

Encapsulate object creation (encapsulate what varies) E I

16

Factory Pattern: Documentation

Intent

Defining an interface for creating object but let subclasses decide which class to be
instantiated

4 N\
Also Known As: Virtual Constructor

Motivation

 Not clear which of the subclasses of the parent class to access - /
* Encapsulate the functionality required to select a class to method
* Two key objects: Factory (Creator) and Product

1/

Factory Pattern: Documentation

Applicability
* A class can’t anticipate the class of objects it must create
* C(lass wants subclasses to specify the object it creates

* (lasses delegate responsibility to one of the several helper classes and which is
the delegate needs to be localized

4 b

Factory Pattern: Documentation

Structure

Product

VAN

ConcreteProduct

Image source: Gang of four book

Creator

FactoryMethod()
AnOperation() o

product = FactoryMethod() ﬁ

A

- ., . -

ConcreteCreator

FactoryMethod() ©-

return new ConcreteProduct %

19

Factory Pattern: Documentation

Participants
Product (Systems Interface)
* Defines the interface of objects the factory method creates

Concrete Product (Systems Course)
* Implements the product interface

Creator (CourseFactory)
* Declares the factory method which returns object of type product
» (Calls factory method to create the product

Concrete Creator (SystemsCourseFactory)
* Overrides the factory method to return instance of concrete product

20

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Factory Pattern: Documentation

Consequences

Eliminates the need to bind application-specific classes into code
* Code only deals with the product interface
* Any number of concrete products can be added

Provides hooks for subclasses
* Creating objects inside a class is more flexible than direct creation

Connects parallel hierarchies
* C(lass can delegate some of its responsibilities to another class
* Those can also use the abstract factory

Too much of subclassing can happen
* Code can become too complicated
* Becomes more easier to introduce factory to existing hierarchy

Observer Pattern: Documentation

Implementation

Check the source code given along: CourseFactory

22

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

