
Design	Patterns
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	
Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2. Head	first	Design	Patterns,	Second	Edition,	Eric	Freeman	and	Elisabeth	Robson	

2



We	can	always	use	an	
adapter:	Adapter	Pattern!

[Structural]

3



Meet	the	Adapter	Pattern!

4

Universal	adapter

Indian	 European



Meet	the	Adapter	Pattern	– A	Scenario

5Why	don’t	we	write	an	adapter	that	can	transform?



Meet	the	Adapter	Pattern

6

• What	if	the	interfaces	are	incompatible?

• What	if	we	can	have	an	adapter	in	between	that	can	transform	the	new	format?

• Adapter	wraps	the	complexity	of	conversion	

• Supports	collaboration	of	different	types	of	object

• Two-way	adapter	can	also	be	made

This Photo by Unknown Author is licensed under CC BY-SA

http://android.stackexchange.com/questions/67702/must-a-usb-otg-adapter-be-used-to-connect-a-dac-amp-to-an-android-or-can-i-use-a
https://creativecommons.org/licenses/by-sa/3.0/


Adapter	Pattern:	Documentation	

7

Intent

Convert	the	interface	of	a	class	into	another	interface	expected	by	the	clients

Also	Known	As:	Wrapper

Motivation

• Not	every	time	there	are	compatible	interfaces
• Promote	reusability
• Three	key	objects:	Client,	Target,	Adapter

Example:	Adapter	to	transform	data	[Think	of	legacy	class	that	accepts	only	
certain	formats]



Adapter	Pattern:	Documentation	

8

Applicability

• There	is	an	existing	class but	its	interface	does	not	match	the	one	needed

• Creation	of	reusable	class	that	can	work	with	unforeseen	classes

• There	are	several	existing	subclasses	but	impractical	to	adapt	their	interface	by	
subclassing	everyone
• Use	object	adapter	[The	one	we	use	here]	– Uses	composition
• Class	adapter	relies	on	multiple	inheritance



Adapter	Pattern:	Documentation	

9

Structure

Image	source:	Gang	of	four	book



Adapter	Pattern:	Documentation	

10

Participants
Target	(NodeData)
• Defines	the	domain	specific	interfaces	that	the	client	uses

Client	(NodeManager)
• Collaborates	with	objects	conforming	to	their	target	interfaces

Adaptee (VideoNode)
• Defines	an	existing	interface	that	needs	adapting

Adapter	(VideoNodeAdapter)
• Adapts	the	interface	of	the	Adaptee to	the	Target	interface

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Adapter	Pattern:	Documentation	

11

Consequences

• Single	adapter	can	be	used	for	many	adapteees
• Can	implement	different	functionalities	to	work	with	many	adaptees
• New	types	of	adapter	can	also	be	easily	introduced

• Provides	good	separation	of	concerns
• Keep	the	logic	for	conversion	in	one
• No	need	to	change	at	multiple	places	

• Overall	complexity	may	increase	– How	much	of	adaptation	is	done?
• Can	it	be	done	in	a	simpler	manner	on	the	Adaptee or	Target?



Adapter	Pattern:	Documentation	

12

Implementation

Check	the	source	code	given	along:	IoTAdapter



Strategies	can	be	different:	
Strategy	Pattern!
[Behavioral]

13



Meet	the	Strategy	Pattern!

14

E-bike	system



Meet	the	Strategy Pattern

15

• What	if	you	want	to	alter	objects	behavior	at	run-time?

• What	if	there	are	similar	objects	but	the	way	they	work	is	different?

• Each	variety	of	algorithm	may	require	its	own	set	of	data	and	functions



Strategy	Pattern:	Documentation	

16

Intent

Define	a	family	of	algorithms,	encapsulate	each	one	and	ensure	they	are
interchangeable.	Strategy	lets	algorithm	change	depending	on	the	client,	who	is	using	it

Also	Known	As:	Policy

Motivation

• Different	algorithms	will	be	appropriate	at	different	times
• Promotes maintainability
• Two	key	objects:	Context	and	Strategy

Example:	Think	of	Google	maps	->	selection	of	mode	of	transport	



Strategy	Pattern:	Documentation	

17

Applicability

• Many	related	classes	differ	only	in	their	behavior

• There	is	a	need	for	different	variants	of	an	algorithm

• Algorithm	might require data that client needs	not	know	about	– avoid	exposing	
algorithm	specific	data	structures

• Class	defines	many	behaviors and	these	appear	as	multiple	conditional	statements



Strategy	Pattern:	Documentation	

18

Structure

Image	source:	Gang	of	four	book



Adapter	Pattern:	Documentation	

19

Participants
Strategy	
• Interface common to all algorithms.	Used	by	context

ConcreteStrategy
• Implements algorithm using strategy interface

Context
• Configured with ConcreteStrategy object
• Maintains reference to a Strategy	object
• Can	define	interface	for	Strategy	to	access	data	

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Strategy Pattern:	Documentation	

20

Consequences

• Families	of	related	algorithms
• Hierarchies	of	strategy	classes	define	a	family	of	algorithms	or	behvaiors
• Inheritance	can	help	in	factoring	out	common	functionality

• Alternative	to	subclassing
• Inheritance	is	another	mechanism	– Hard-wires	context	[coupling!]

• Eliminates	conditional	statements
• Encapsulates behavior	separately	[Good	solution	for	long	method	smell]

• If the number of variations are less - Don’t	overcomplicate!	
• Classes	must be aware of different possible strategies



How	about	building	things:	
Builder	Pattern!
[Creational]

21



Meet	the	Builder	Pattern!

22



Meet	the	Builder	Pattern!

23
How	to	dynamically	build	the	different	types	of	student	records?



Meet	the	Builder	Pattern

24

• What	if	there	is	a	complex object?	

• Can we avoid instantiation of a huge	constructor?

• Not every	time	all	constructor	parameters	are	required	

• Allows	extraction	of	object	construction	code	to	separate	object	

• Creation	of	an	object	is	just	about	assembling	other	objects
step	by step

• A	very	decoupled	approach	to	creation	



Builder	Pattern:	Documentation	

25

Intent

Separate	construction	of	complex	object	from	representation	such	that	same	
construction	process	can	result	in	different	representations

Also	Known	As:	Builder

Motivation

• Separate	object	construction	from	business	logic
• Promote	readability	and	understandability	
• Three	key	objects:	Director,	Builder,	Product

Example:	Builder	to	build	different	types	of	vehicles	[Each	has	engine,	tyre,	etc]



Builder	Pattern:	Documentation	

26

Applicability

• Algorithm for creating the object must be independent
• Different	parts	may	make	up	the	object
• Need not worry about how they are put together	

• Construction	of	different	representations	of	the	object	needs	to	be	supported	



Builder Pattern:	Documentation	

27

Structure

Image	source:	Gang	of	four	book



Adapter	Pattern:	Documentation	

28

Participants
Builder	(StudentBuilder)
• Defines	the interface	for	creating	parts	of	a	product	object

ConcreteBuilder (ConcreteStudentBuilder)
• Assembles	the	parts	to	create	product	by	implementing	builder	interface

Director	(StudentDirector)
• Constructs an object using the	builder	interface

Product	(Student)
• Complex object under construction
• Includes	classes	that	define	the	different	parts

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Builder	Pattern:	Documentation	

29

Consequences

• Easily	vary	products	internal	representation	
• Director	gets	the	abstract	interface	to	build	a	product
• All	that	needs	to	be	done	is	to	define	a	new	kind	of	builder

• Isolate	code	for	representation	and	constructions
• Concrete	builder	contains	code	for	building	a	kind	of	product
• Directors	can	reuse	builders	to	build	different	variants	of	product	

• More	control	over	the	construction	process	
• Step by step approach under	directors control	– Focus	is	on	the	process

• The	overall	code	complexity	increases	due	to	multiple	classes
• Benefits	in	the	long	run



Builder	Pattern:	Documentation	

30

Implementation

Check	the	source	code	given	along:	StudentRecordBuilder



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

