Design Patterns

CS6.401 Software Engineering

Co 1[%;\1 A2, @'mew'y Yes e Cenfve

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

o &
. S R
B et
R ol S Al RN
'# RYE | O e
N H

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY
HYDERABAD

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides

2. Head first Design Patterns, Second Edition, Eric Freeman and Elisabeth Robson

We can always use an
adapter: Adapter Pattern!
|Structural]

Meet the Adapter Pattern!

Indian

European

- .‘)\\ ¥
=)
=
=
(€ &
“ A @ s B

‘ ' L ' Universal adapter

Meet the Adapter Pattern — A Scenario

Cameras

Video data format
Not supported in node data manager

Send data

Node Data
Manager

Sensor Class

Why don’t we write an adapter that can transform?

Meet the Adapter Pattern

 What if the interfaces are incompatible?
 What if we can have an adapter in between that can transform the new format?
« Adapter wraps the complexity of conversion

* Supports collaboration of different types of object

* Two-way adapter can also be made

This Photo by Unknown Author is licensed under CC BY-SA

http://android.stackexchange.com/questions/67702/must-a-usb-otg-adapter-be-used-to-connect-a-dac-amp-to-an-android-or-can-i-use-a
https://creativecommons.org/licenses/by-sa/3.0/

Adapter Pattern: Documentation

Intent
Convert the interface of a class into another interface expected by the clients

Also Known As: Wrapper

N 4
Motivation
* Not every time there are compatible interfaces
* Promote reusability
* Three key objects: Client, Target, Adapter L,

Example: Adapter to transform data [Think of legacy class that accepts only
certain formats]

Adapter Pattern: Documentation

Applicability

* There is an existing class but its interface does not match the one needed

* Creation of reusable class that can work with unforeseen classes

* There are several existing subclasses but impractical to adapt their interface by

subclassing everyone

* Use object adapter [The one we use here] - Uses composition
* (lass adapter relies on multiple inheritance

Adapter Pattern: Documentation

Structure
Client ™ Target — Adaptee
Request() SpecificRequest()
adaptee
Adapter
Request() O-F--~==~---=-~ adaptee—>SpecificRequest() %

Image source: Gang of four book

Adapter Pattern: Documentation

Participants
Target (NodeData)
* Defines the domain specific interfaces that the client uses

Client (NodeManager)
* Collaborates with objects conforming to their target interfaces

Adaptee (VideoNode)
* Defines an existing interface that needs adapting

Adapter (VideoNodeAdapter)
* Adapts the interface of the Adaptee to the Target interface

10

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Adapter Pattern: Documentation

Consequences

» Single adapter can be used for many adapteees
* Can implement different functionalities to work with many adaptees
* New types of adapter can also be easily introduced

* Provides good separation of concerns
* Keep the logic for conversion in one
* No need to change at multiple places

* Overall complexity may increase - How much of adaptation is done?
* (Canitbe done in a simpler manner on the Adaptee or Target?

Adapter Pattern: Documentation

Implementation

Check the source code given along: [oTAdapter

12

Strategies can be different:
Strategy Pattern!
|Behavioral]

Meet the Strategy Pattern!

EA
oo

PAY / How manyi\

conditions for
_ payment ?

) Payment Class

Meet the Strategy Pattern

 What if you want to alter objects behavior at run-time?
 What if there are similar objects but the way they work is different?

* Each variety of algorithm may require its own set of data and functions

Strategy Pattern: Documentation

Intent

Define a family of algorithms, encapsulate each one and ensure they are
interchangeable. Strategy lets algorithm change depending on the client, who is using it

Also Known As: Policy

Motivation

* Different algorithms will be appropriate at different times
* Promotes maintainability
* Two key objects: Context and Strategy \- J

Example: Think of Google maps -> selection of mode of transport

Strategy Pattern: Documentation

Applicability

* Many related classes differ only in their behavior
* There is a need for different variants of an algorithm

* Algorithm might require data that client needs not know about - avoid exposing
algorithm specific data structures

* C(lass defines many behaviors and these appear as multiple conditional statements

Strategy Pattern: Documentation

Structure
strategy
Context K> w1 Strategy
Contextinterface() Algorithminterface()
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Image source: Gang of four book

Algorithminterface()

Algorithminterface()

Algorithminterface()

1§

Adapter Pattern: Documentation

Participants
Strategy
* Interface common to all algorithms. Used by context

ConcreteStrategy
* Implements algorithm using strategy interface

Context

* Configured with ConcreteStrategy object

* Maintains reference to a Strategy object

* (Can define interface for Strategy to access data

19

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Strategy Pattern: Documentation

Consequences

Families of related algorithms
* Hierarchies of strategy classes define a family of algorithms or behvaiors
* Inheritance can help in factoring out common functionality

* Alternative to subclassing
* Inheritance is another mechanism - Hard-wires context [coupling!]

* Eliminates conditional statements
* Encapsulates behavior separately [Good solution for long method smell]

e [If the number of variations are less - Don’t overcomplicate!
* (lasses must be aware of different possible strategies

How about building things:
Builder Pattern!
|Creational]

Meet the Builder Pattern!

I need a nice
blue car

Different Parts

22

Meet the Builder Pattern!

Not every student
record needs to have all details

Can I combine what I want

\ dynamically?

Student Record
A R
A\ — —

Course Admin

S

L

Other info

How to dynamically build the different types of student records?

23

Meet the Builder Pattern

 What if there is a complex object?

* (Can we avoid instantiation of a huge constructor?

* Notevery time all constructor parameters are required

* Allows extraction of object construction code to separate object

* Creation of an object is just about assembling other objects
step by step

* Avery decoupled approach to creation

Builder Pattern: Documentation
Intent

Separate construction of complex object from representation such that same
construction process can result in different representations

Also Known As: Builder

(
Motivation
* Separate object construction from business logic
* Promote readability and understandability g

* Three key objects: Director, Builder, Product

Example: Builder to build different types of vehicles [Each has engine, tyre, etc]

Builder Pattern: Documentation

Applicability
* Algorithm for creating the object must be independent
* Different parts may make up the object

* Need not worry about how they are put together

* Construction of different representations of the object needs to be supported

Builder Pattern: Documentation

Structure

Director

builder

Construct() o
|

}

for all objects in structure {

builder->BuildPart()

L

Image source: Gang of four book

Builder

BuildPart()

A

ConcreteBuilder

BuildPart()
GetResult()

Product

27

Adapter Pattern: Documentation

Participants
Builder (StudentBuilder)
* Defines the interface for creating parts of a product object

ConcreteBuilder (ConcreteStudentBuilder)
* Assembles the parts to create product by implementing builder interface

Director (StudentDirector)
* Constructs an object using the builder interface

Product (Student)
» Complex object under construction
* Includes classes that define the different parts

28

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Builder Pattern: Documentation

Consequences

Easily vary products internal representation
* Director gets the abstract interface to build a product
* All that needs to be done is to define a new kind of builder

[solate code for representation and constructions
* Concrete builder contains code for building a kind of product
* Directors can reuse builders to build different variants of product

More control over the construction process
» Step by step approach under directors control - Focus is on the process

* The overall code complexity increases due to multiple classes
* Benefits in the long run

Builder Pattern: Documentation

Implementation

Check the source code given along: StudentRecordBuilder

30

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

